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Abstract Being one of new generation of composites,

functionally graded materials (FGMs) possess gradually

changed physical properties due to their compositional and/

or microstructural gradients. In literature, exhaustive stud-

ies have been carried out in compositional modeling and

design, while limited reports are available for microstruc-

tural optimization. This article presents an inverse

homogenization method for the design of two-phase (solid/

void) FGM microstructures, whose periodic base cells

(PBCs) vary in a direction parallel to the property gradient

but periodically repeat themselves in the perpendicular

direction. The effective elasticity tensor at each PBC is

estimated in terms of the homogenization theory. The

overall difference between the effective tensor and their

target is minimized by seeking for an optimal PBC material

topology. To preserve the connectivity between adjacent

PBCs, three methods, namely connective constraint, pseudo

load, and unified formulation with nonlinear diffusion are

proposed herein. A number of two-dimensional examples

possessing graded volume fraction and Young’s modulus

but constant positive or negative Poisson’s ratios are pre-

sented to demonstrate this computational design procedure.

Introduction

Functionally graded materials (FGMs) are characterized

by gradually changed physical properties due to a gradient

(elevated) distribution of compositions and/or microstruc-

tures. The concept of FGM was proposed around

mid-1980s [1] when the researchers in aeronautics and

advanced materials attempted to seek desirable thermal

properties, specifically, an insulative outer shell and con-

ductive inner core, for soaring spacecraft suffering ultra

high temperature gradient. Since then, rapid and significant

progress has been made in both the fabrication and appli-

cation of FGMs [2, 3].

Perhaps, the most amazing FGMs are not produced by

human but by nature. Indeed, a large number of biological

systems ranging from bones, sea shells to plant stems are

composed of ‘‘optimally’’ graded microstructures, which

have evolved over millions of years to accommodate the

natural environment that they expose [2]. Of all these

natural FGMs, the stems of bamboos have attracted sub-

stantial attention for their superior performance in resisting

high external loading with a relatively light weight [4–7].

Bamboo is longitudinally reinforced by strong fibers pro-

portionally distributed along the distance to the center of

hollow stems. Experiments showed that the fracture

toughness of such structures is even higher than some

aluminum alloys [4]. It should be noted that one of the

most important features of the natural FGMs like bamboo

and bone is their self-optimized capability through mod-

eling and remodeling their microstructures under certain

level of mechanical stimuli [5].

It has been a fact of matter that engineers can develop

new materials by morphologically mimicking natural

FGMs. However, is it possible to invent ingenious materials

which nature does not have or the mankind has not known

yet? Since the microstructures of biological FGMs can be

viewed as a result of an optimization through evolution and/

or remodeling [5], it is worthwhile attempting to design new

FGM microstructures by using the state-of-the-art topology

optimization techniques [8]. Although classic topology

optimization procedures were originally developed for

S. Zhou � Q. Li (&)

School of Aerospace, Mechanical and Mechatronic Engineering,

The University of Sydney, Sydney, NSW 2006, Australia

e-mail: Q.Li@usyd.edu.au

123

J Mater Sci (2008) 43:5157–5167

DOI 10.1007/s10853-008-2722-y



designing the stiffest structures, they have been successfully

extended to the design of periodic composites composed of

spatially repeated representative volume elements (RVEs)

or periodic base cells (PBCs) in the last decade [9, 10].

To deal with the design of periodic composites, there are

two relevant computational problems. On the one hand, the

effective (or bulk) physical properties at a specific point

(i.e., pixel for 2D or voxel for 3D) in the composite can be

determined by using the homogenization procedure for a

given material composition and microstructure [11, 12]. On

the other hand, material compositions and microstructures

can be sought by minimizing the difference between the

homogenized effective properties and their target values.

Being a relatively new computational technique, the latter,

namely inverse homogenization, signifies a novel material

design paradigm. It has enabled us to devise a range of new

composite materials with extraordinary physical properties,

e.g., negative thermal expansion coefficient (i.e., expansion

when cooled while shrinkage when heated) [13], extremal

conductivity [14, 15], maximum permeability [16], etc.

Recently, with the mature of fabrication techniques like

selective laser melting (SLM) [17], especially the advent of

solid freeform fabrication (SFF) technologies (e.g., three-

dimensional printing [18, 19]), it has become possible to

fabricate various complicated microstructures in a fashion

of point by point and layer by layer directly from a com-

puter model. An obvious benefit of such fabrication

technology is that it allows more sophisticated computa-

tional design of FGM from not only compositional but also

microstructural aspects. In particular, the microstructural

details can be properly reflected by directly printing them

into 3D part with an acceptable microscopic resolution. A

seamless integration of the inverse homogenization with

SFF has been reported in [20–22] for designing and fab-

ricating porous tissue scaffolds. This technology has

provided us with considerable flexibility to develop more

demanding FGM microstructures being of desirable prop-

erty gradients.

However, the existing version of inverse homogenization

procedure has mainly focused on generating homogeneous

periodic composites without purposely involving graded

effective physical properties, where all the base cells are

identical in their composition and architecture. To model

inhomogeneous media, some attempts are made in incor-

porating the inverse homogenization into base cell design.

Lin et al. [20, 21] developed a two-stage method for fusion

cage design, where global material layout and local

microstructures are optimized in a serial fashion. The spa-

tial volume fraction and elasticity tensor generated from the

global design were used as a goal for the topological design

of local base cells. As a result, an inhomogeneous tissue

scaffold is obtained with non-uniform mechanical proper-

ties that match to the property gradient of native spinal bone

tissues. Chen and his coworkers [23, 24] as well as See-

persad et al. [25] considered non-identical base cells for

modeling inhomogeneous media, where the size and vol-

ume fraction of base cells are the variables for graded

properties. However, these studies mainly account for the

same or similar microstructural topology, and largely rely

on the design of individual base cell without intentionally

considering their interconnection.

From macroscopic design perspective, pattern repetition

[26] is another technique that allows one master and a

number of slave structural components to have similar

topological layouts whereas keep the connectivity, where

each component has its own coordinate system with dif-

ferent scale factors in the demand of the size difference

between the components. This method has been success-

fully used by Altair Company to design the ribs in a wing

model and other products subjected to manufacturing

constraints. It might be possible to apply this method to the

microstructural design of FGM as it can guarantee two of

the most important features, namely the connectivity and

similarity between adjacent base cells. However, great

effort is still needed to address the issues like mapping

from macro to micro scales, and associative calculation of

effective physical properties.

This article attempts to expand such an individual PBC

design methodology in two different ways on (1) system-

atically addressing the connectivity issues between

different PBCs and (2) formulating the design of micro-

structure gradient in a graded base cell (GBC) model to

accommodate desirable property gradation in a unified

formulation. Accordingly, three different techniques are

presented below to tackle the connectivity issue in the PBC

design. These techniques will be demonstrated through a

number of illustrative examples, which could be precisely

fabricated by using SFF technologies in the future.

Materials and methods

To develop graded microstructure for a specific FGM, two

different approaches may be applied on either designing

PBC representing a pixel/voxel in different FGM depths

individually or formulating the property gradient across a

limited number of PBCs as a whole. For the former, we

first generate the local microstructures in different PBCs,

separately, and then assemble all the PBCs to form FGM

structure. For the latter, the graded microstructures across

all the PBCs (namely GBC) are generated altogether in a

unified formulation. In both the cases, the effective prop-

erties are estimated by using the finite element (FE) based

homogenization procedure [11, 12, 27]. The differences

between the effective values estimated from the homoge-

nization and desired property values are minimized by
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seeking for an ideal microstructural topology in either PBC

or GBC models [10, 28].

Both the PBC and GBC microstructures in this article are

represented in a density-based model, where the volume

fraction of solid material at point (element) x, also denoted

in relative density q(x), serves as the design variables.

Taking a two-phase (solid-void) media as an example, the

void and solid phases are represented by q(x) = 0 and

q(x) = 1, respectively. Nevertheless, intermediate density,

i.e., 0 \ q(x) \ 1, is allowed during design in order to relax

the original ill-posed topology optimization problem [29].

It should be noted that FGMs are generally expected to

have a continuum distribution of their constituent phases

and corresponding properties, whose volume fractions are

usually depicted by continuous concave upward or concave

downward functions along gradation direction [30]. Nev-

ertheless, a class of FGMs has been fabricated by bonding

different compositional layers or connecting cellular

microstructures together, in which the continuity of prop-

erty gradients can only be approximated in a finite number

of discontinuous layers or cells [30]. In fact, the micro-

structures of many natural FGMs like cancellous bones and

bamboo stems are composed of such a layer-by-layer or

cell-by-cell manner. From this perspective, the layer- or

cell-wise representation of material distribution is com-

patible with the base-cell design model, in which each base

cell represents part of one layer or one pixel/voxel in FGM.

The discrete design variable, namely the volume fraction of

candidate phase at each FE, can approximately reflect the

local composition of each particle of FGM constituent.

Inverse homogenization method

In traditional FGM design, the local effective properties are

often evaluated by Mori–Tanaka [31] or the self-consistent

[32] methods. Both of them only rely on local volume

fractions and the properties of matrix and inclusion phases

without consideration of the microstructures. It was found

that the applicability of these two methods is dependent

upon some conditions [33]. For example, when FGM

constitutes well-defined continuous matrix (i.e., the first

phase) and discontinuous inclusion (the second phase), the

local properties for FGM is better interpolated by the

Mori–Tanaka method. The self-consistent method is more

suitable for the FGM with a skeletal microstructure in a

wide transition zone between distanced matrix phases. It

was also reported in [33] that the Mori–Tanaka estimate

coincides with the Hashin–Shtrikman bounds [34] when

the two candidate phases have a greater modulus differ-

ence. Actually, based upon the inverse homogenization

method [15, 35], we found exact microstructures for

two-phase composites whose local thermal conductivity

can reach the lower/upper Hashin–Shtrikman bounds,

depending on whether insulative or conductive phase

serves as the matrix [15, 35]. In this article, for each layer

of the FGM, the local properties are integrated over the

RVE in terms of the homogenization method [11, 12, 27].

The typical homogenization theory [11, 12, 27] may not

exactly be applicable to FGM base cells because of non-

periodicity in the gradient direction. This implies that the

effective values calculated via the homogenization algo-

rithm may not be exactly correct. However, an adequate

accuracy can be achieved if the size of base cells is relatively

small compared to the property gradient. In other words, if

the change (descent or ascent) in the effective properties

across each base cell is sufficiently small, the homogenized

values can practically approximate to the true values of the

FGM properties. In this respect, existing fabrication tech-

nologies allow less than 1–5 lm geometric features [22],

making such an approximation practically sensible.

According to the homogenization theory [11, 12, 27],

the effective elasticity tensor for a microstructure occu-

pying domain X is given by

�Gijkl qð Þ ¼ 1

Xj j

Z
X

Dijmn qð Þ �ekl
mn � ~ekl

mn

� �
dX ð1Þ

where Xj j denotes the area (or volume in 3D) of the design

domain X. The four linearly independent unit test strain

fields �ekl
mn are given as �e11

mn ¼ 1 0 0 0ð ÞT; �e22
mn ¼

0 1 0 0ð ÞT; �e12
mn ¼ 0 0 1 0ð ÞT and �e21

mn ¼
0 0 0 1ð ÞT; respectively in 2D cases. The strain

fields ~ekl
mn; induced by the test strains, are the solutions to

the following equation
Z

X
Dijmneij vð Þ~ekl

mn dX ¼
Z

X
Dijmneij vð Þ�ekl

mn dX ð2Þ

where the virtual displacement field v [ Hper belongs to the

periodic Sobolev functional space.

The local elasticity tensor is denoted as Dijmn(q), which

can be simplified in a matrix form for 2D isotropic mate-

rials, given by

Gij qð Þ ¼
D1111 D1122 0

D1122 D2222 0

0 0 D1212

2
4

3
5

¼ E qð Þ
1� t2

1 t 0

t 1 0

0 0 0:5 1� tð Þ

2
4

3
5 ð3Þ

where t denotes Poisson’s ratio and E(q) is the density-

related Young’s modulus, usually interpolated as

E qð Þ ¼ qpE1 þ 1� qð ÞpE2 ð4Þ

in terms of the ‘‘solid isotropic material with penalization’’

(SIMP) model in topology optimization [36]. The Young’s

moduli for the solid and void phases are denoted by E1 and

E2 respectively. In order to avoid computing singularity, E2
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is usually set as a very small positive value other than 0

(e.g., E2 = 10-3E1). The penalty factor p in the SIMP

interpolation should be chosen properly to ensure the bulk

modulus not higher than the upper Hashin–Strikman (HS)

bound [34]. In addition to Eq. 4, the local Young’s modulus

can also be interpreted by the following scheme as

proposed by Stolpe and Svanberg in [37], given by

E qð Þ ¼ E2 þ
q E1 � E2ð Þ

1þ q 1� qð Þ ð5Þ

For the maximal stiffness problem, Stolpe and Svanberg

proved that the objective function (mean compliance) is

concave for a priori known penalty factor q� E1 � E2ð Þ=E1,

thus the problem is of a global optimum. In addition to

the aforementioned interpolation schemes, Bendsøe and

Sigmund [38] also directly used the upper HS bound as the

interpolation scheme for the problems of the maximal

stiffness and generated desirable black/white results. The

work in [15, 35] further indicates that the HS bound-based

interpolation is self-weighted for the composite design with

the extremal thermal conductivities where no penalty factors

are needed.

Mathematically, the inverse homogenization can be

formulated as the least square of the difference between the

entries of the target G
�

and the homogenized effective

elastic tensor �G; as

min
q

J qð Þ ¼
X3

i;j¼1

rij G
�

ij � �Gij

� �2

ð6Þ

where rij are positive weighting factors used to emphasize

the role of different entries in the objective function. The

value in Eq. 6 can be regarded as a potential energy as it

evaluates how different the effective elasticity is from its

target.

In order to employ the MMA method [39] for the

minimization of Eq. 6, the sensitivity of the objective is

evaluated as,

oJ

oq
¼ �2

X3

i;j¼1

rij G
�

ij � �Gij

� � o �Gij

oq
ð7Þ

where o �Gij=oq can be derived from the adjoint variable

method [40], as

o

oq
�Gij qð Þ ¼ 1

Xj j

Z
X

�eii
ii � ~eii

ii

� � oGij qð Þ
oq

�ejj
jj � ~ejj

jj

� �
dX ð8Þ

Connectivity between PBCs

In a typical homogeneous periodic composite, all the

boundary conditions of a base cell are imposed periodically

so that the same effective (bulk) material properties can be

attained at any point of the composite. Due to the nature

of periodicity, there is generally no connection problem

between adjacent PBCs. In inhomogeneous FGM, how-

ever, one of the bi-directional (2D) or tri-directional (3D)

periodicity must be released to accommodate a property

gradient along this direction. Thus, ensuring proper con-

nectivity between adjacent PBCs becomes a significant

issue confronting in FGM design. To tackle this problem,

three different methods, namely (1) connective constraints,

(2) pseudo load, and (3) unified formulation with nonlinear

diffusion, are proposed in this article as follows.

Kinematical connective constraint (KC) method

Since there is no guarantee for a proper boundary con-

nection along gradient direction, one of the simplest

methods is to impose connective constraints in the

boundary across the graded PBCs. As illustrated in Fig. 1

for a FGM having NL layers, the yellow (grey in black/

white pictures) areas in the gradient boundary are perma-

nently occupied by solid materials, serving as imposed

connective regions to enforce continuous edge-to-edge

bonds between the adjacent PBCs. To make the homoge-

nization more closely approximate the effective elastic

tensor, the number, location, and size of the connectors in

gradient direction should be as identical as possible,

yielding a mostly possible periodic boundary condition in

gradient direction. Obviously, imposing such a ‘‘non-

design connector domain’’ in PBC model may be a critical

step since it can lead to different final topologies. As a

reference, one can generate a PBC design based on the

typical periodic boundaries for a desired property and then

follow the topology to prescribe a more suitable connective

zone in the non-PBC boundaries. Taking FGM with the

extremely positive Poisson’s ratio as an example, the four

corners should not be set as the connective zones as the

commonly known optimal structure in a shape of hexagon

[10, 28] has no solid materials close to the corners.

Pseudo load (PL) method

It is a fact of matter that the connectivity between PBCs

enables the FGM to sustain external loading with certain

stiffness. For this reason, one can impose the base cell a

Gradient Direction

…

Base Cell 1 Base Cell 2 Base Cell NL

P
erio

d
ic D

irectio
n

Prescribed Connectors

Fig. 1 Kinematical connective constraints between periodic base

cells
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pseudo load and a kinematic boundary in the gradient

boundaries, as illustrated in Fig. 2. The way to define the

pseudo load and kinematical boundary condition should

follow the strategies given in Fig. 1, i.e., preserving peri-

odic boundary conditions whenever possible. Thus the load

and kinematical boundary conditions are prescribed in the

opposite PBC gradient boundaries identically for all PBCs

(Fig. 2). This treatment allows a pseudo stiffness criterion

to be included in the design objective, in a compliance

term, as,

min
q

J qð Þ ¼
X3

i;j¼1

rij G
�

ij � �Gij

� �2

þ g
Z

X
eðuÞDðqÞeðuÞ dX

ð9Þ

where the strain and displacement induced are denoted as e
and u, respectively. X represents the domain of base cell as

in Fig. 2. The weighting factor g should be sufficiently

small; otherwise the mean compliance term could play an

overly dominant role in the design. The introduction of

kinematical boundary and pseudo load in the gradient

boundaries usually lead to proper connective zones being

formed in final PBC. Although the compliance (the 2nd

term) is relatively small compared to the potential energy

(the 1st term) in the objective function (to be shown in the

example), it acts as the seeds in the PBC design, where the

solid material grows around the pseudo boundary and

loading areas, thus capable of connecting the PBCs across

the graded boundaries.

Unified formulation (UF) with nonlinear diffusion method

The aforementioned two approaches are proposed to tackle

the connectivity issue from individual design of PBCs at

different gradient depths. To achieve a certain property

gradient, it appears more meaningful to design graded FGM

microstructures as a whole, where the connectivity between

PBCs can be considered altogether through a unified for-

mulation. Our previous studies demonstrated that the

nonlinear diffusion [41, 42] is of considerable significance in

suppressing checkerboard patterns and blurred boundaries

for the PBC design [14, 15], thereby ensuring proper topo-

logical interconnection. Theoretically, the large norm of

density gradient occurs in the area whose solid phase is being

broken. Thus the minimization of the norm of the density

gradient can effectively avoid the occurrence of disconnec-

tivity between PBCs. For this reason, the design problem is

formulated in terms of the least square of property differ-

ences, nonlinear diffusion energy and compliance, as

2
3 *

2

, 1

min
k kNL

k
ij ijij

k i j

NL

k

J r G G

u D u d (10)

d

where s is a weighting factor for the diffusion energy.

The objective function in Eq. 10 is actually a generalized

form for all these three different methods proposed for the

FGM design in this article. For example, in the first (KC) and

third (UF) methods, the weight g may be set to zero to omit

the compliance requirement, whereas the prescription of

kinematical connective constraints is no longer required in

the last two (i.e., PL and UF) methods. Nevertheless, the

nonlinear diffusion terms can be included for all the three

methods to play a role on suppressing checkerboard patterns

and obtaining edge-preserving topologies.

It is noted that in the first two (KC and PL) methods, the

effective domain of nonlinear diffusion term in Eq. 10 is

the same as PBC X, whereas in the last (UF) method, the

effective domain equals the summation of all PBCs

within GBC so that the nonlinear diffusion takes effect in

all different layers altogether.

The sensitivity of the diffusion energy with respect to

the density is given by

ou rqk kð Þ
oq

¼ �div
ou

o rqk kð Þ
1

rqk krq

� �
ð11Þ

where div denotes the divergence of a vector. Derived from

Fick’s law and the continuity condition, the diffusion

process was firstly used to describe mass transport. Dif-

ferent diffusion functions determine different diffusion

processes. For example, if u rqk kð Þ ¼ 1
2
rqk k2; the right

part of Eq. 11 degenerates to the well-known Laplace

operator, which coincides with the linear filter models in

topology optimization [43]. More details about the

requirements of diffusion functions are described in [41].

In the FGM design, blurred edge with ambiguity in inter-

preting phase interfaces can be effectively avoided by

including the nonlinear diffusion term in Eq. 10.

The computational design process of FGM can be

depicted in a detailed flowchart as Fig. 3. These three

methods of reinforcing connectivity can be reflected in

PBC/GBC modelling and/or design objective function. One

may attempt all these methods to generate different solu-

tions for comparison.

Base cell 

F
Pseudo 
load

Pseudo 
Kinematic 
boundary

Fig. 2 Pseudo load and boundary condition in PBC
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It should be pointed out that the present inverse

homogenization is established for a mono-directional

property gradient. Mathematically it may not be applicable

to bi- (2D) or tri-directional (3D) situations because there is

no longer any base cell periodicity in such cases. However,

if the property gradient is sufficiently small compared to

the size of base cell, a quasi-periodicity could be consid-

ered. As a result, the FGM microstructures can still be

designed by using the inverse homogenization method

presented, as long as the connectivity between PBCs can be

maintained.

Results and discussion

It is assumed that the solid phase represented by dark color

in all the examples below has a unity Young’s modulus of

E1 = 1 and a Poisson’s ratio of t = 0.3. Using such a basis

material, we seek for FGMs with certain graded Young’s

modulus and volume fraction through a limited number of

layers (12 layers in all the examples below). Meanwhile,

their effective Poisson’s ratios are amounted to either a

positive constant value of t = 0.9 or a negative constant

value of t = -0.85. To show the FGM microstructures,

each layer in the following examples is made up by three

periodically repeated PBCs. For clarification, the GBCs in

the middle row are highlighted by the dashed line.

In the PBC topology optimization, two initial values of

material distributions are typically adopted in literature [9,

10, 15]. Initial Design 1 involves a material distribution,

where the pixel/voxel (elemental) density (or volume

fraction) is proportional to the distance from the pixel

center to the PBC center (as shown in Fig. 4a). Initial

Design 2 involves a pattern whose elemental density is

inversely proportional to this distance (as shown in

Fig. 4b). The color bar on the top of Fig. 4 indicates the

relation of the grey-scaled pixel to the value of volume

fraction. For the former, the high-density materials extend

from boundary to the core area in the radial direction. One

benefit of using Initial Design 1 is that the connectivity

between adjacent PBCs may be better than that generated

from Initial Design 2 since initial solid materials in the

boundaries may not be removed completely during design,

thereby remaining certain degree of connectivity. For the

latter, the connectivity may not be guaranteed and one of

the aforementioned methods be often needed. Neverthe-

less, such an initial design can yield different FGM

microstructures, sometimes more beneficial to design and

fabrication.

In the following examples, all the design parameters are

summarized in Table 1, in which the target elastic tensor at

the kth layer is denoted by Gk
�
¼ bkGþ or Gk

�
¼ bkG� with

positive or negative Poisson’s ratio, respectively, where

Gþ ¼
1 1 0

1 1 0

0 0 0

2
4

3
5 and G� ¼

1 �0:85 0

�0:85 1 0

0 0 0:2

2
4

3
5:

Example with kinematical connective constraint (KC)

Example 1 is used to show the connective constraint method,

where the yellow (grey in black/white pictures) regions in all

Initial 
Density

Finite Element 
Analysis
Eq. (2)

Subjected to  
4 unit test 

strains

1 2 3
1 1 1
1 2 3
2 2 2

1 2 3
N N N

u u u

u u u

u u u

Displacement

gradient analysis

Sensitivity
Analyses

Eqs. (7), (8) 
and (11)

MMA

1

2

1

1

1

N

k

k

k

1

2

0

0

0

N

Converge?No
Yes

Step 1Step 1

Step 2Step 2

Step 4Step 4

3Step 3

FE analysis 
(for pseudo load)

d
Diffusion energy

Mean compliance
duDu

Update density

(k=0)

Update
FE model
(k=k+1)

0
0

Output

Fig. 3 Flowchart of the design

process
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these 12 PBCs are the fixed non-design domains as in Fig. 5.

The interpolation scheme for local Young’s modulus is

based on Eq. 5 with q = 5. Starting from Initial Design 1, we

can first obtain the optimized microstructure for each of the

12 PBCs, and then assemble such 12 individual PBCs to form

the FGM configuration shown in the bottom of Fig. 5. In this

example, the Young’s modulus varies from 0.0058 (left) to

0.0373 (right) across these 12 layers, and correspondingly,

the volume fractions change from 0.2516 to 0.4823 through

the layers, as plotted in the top of Fig. 5. The effective

Poisson’s ratio of this FGM is maintained in a desirable

positive constant of t = 0.90. In this example, it is observed

that the microstructural topology is identical in the different

layers of PBCs.

Example with pseudo load (PL)

In the PBC models of Example 2, two fixed points on the

left edge are prescribed as the pseudo kinematical bound-

aries and other two corresponding positions on the right

edge are assigned two pseudo point forces (Fig. 6a), which

yields the microstructural topology as in Fig. 6b). Figure 7

shows the assembly of the FGM, in which the Young’s

modulus grades from 0.0453 (left) to 0.1516 (right), and

correspondingly, the volume fraction varies from 0.4057 to

0.6914 across these PBC layers (top of Fig. 7). In this

example, a negative effective Poisson’s ratio around t =

-0.51 is attained for all the PBCs. The convergence of the

objective function and its individual components for the

fifth layer of PBC (i.e., Fig. 6b) are plotted in Fig. 8 with a

logarithmic scale. It is observed that although the diffusion

energy and mean compliance only make up a small portion

of the total objective energy, the introduction of them

allows automatically designating proper connection

between PBCs. It should be pointed out that in this

example, Initial Design 2 was adopted, where if there were

no pseudo loads and boundary prescribed, material break-

age between PBCs could have been observed. It is also

seen that although the PBC topologies differ considerably

from Layer 1 to Layer 12 due to their individual designs,

all the PBC connectivity preserved well.

Fig. 4 Initial microstructures: (a) Initial Design 1; (b) Initial Design 2

Table 1 Design parameters for demonstrative examples

Example 1 Example 2 Example 3 Example 4 Example 5

MC KC PL UF UF UF

ID 1 2 1 2 2

Mesh 40 9 40 40 9 40 50 9 50 50 9 50 30 9 30

sn+1 s2
nþ1 ¼ 0:98s2

n s2
nþ1 ¼ 0:99s2

n s2
nþ1 ¼ 0:99s2

n s2
nþ1 ¼ 0:98s2

n s2
nþ1 ¼ 0:96s2

n

s0 0.01 0.005 0.06 0.025 0.04

g 0 0.02 0 0 0

biG
0 biG

+ biG
- biG

+ biG
+ biG

-

b1 0.040 0.065 0.035 0.035 0.08

b2 0.055 0.070 0.040 0.040 0.10

b3 0.060 0.085 0.045 0.045 0.12

b4 0.065 0.090 0.050 0.050 0.14

b5 0.070 0.110 0.055 0.055 0.16

b6 0.075 0.145 0.060 0.060 0.18

b7 0.080 0.150 0.065 0.065 0.20

b8 0.085 0.160 0.070 0.070 0.22

b9 0.090 0.170 0.075 0.075 0.24

b10 0.095 0.190 0.080 0.080 0.26

b11 0.100 0.205 0.085 0.085 0.28

b12 0.105 0.210 0.090 0.090 0.30

Note: MC, the ‘‘methods for connectivity constraint’’; ID, initial design
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Examples in a unified formulation with nonlinear

diffusion (UF)

Unlike the aforementioned examples, where the base cells

are designed individually, the examples in this section are

based upon the unified formulation designs in a 12-layer

GBC model. The nonlinear diffusion takes effect in the

entire GBC design domain for ensuring connectivity

between these 12 layers of PBCs. As such, the inverse

homogenization is carried out over all layers of PBCs

altogether as they are regarded as an integral structure

rather than independent cells. Note that in this example,

Initial Design 1 (Fig. 4a) is repetitively set up as the seeds

of 12 base cells within GBC domain. The homogenization

is also carried out according to each of such seeded base

cells. As in Fig. 9, the microstructure in Example 3 dem-

onstrates a desired role of the nonlinear diffusion on

improving PBC connectivity. The effective Poisson’s ratio

of this FGM reaches an acceptable positive value of

t = 0.89, whereas the Young’s modulus and volume

fraction vary from 0.0096 to 0.0238 and from 0.1736 to

0.3772, respectively, across all the 12 PBC layers from left

to right (as in the top of Fig. 9). It is particularly worth

noting that although the resulting topologies are different in

different PBC layers, they connect with each other

seamlessly.

Example 4 is presented in Fig. 10, whose microstructure

is generated from Initial Design 2 (Fig. 4b) seeded in a 12-

layer GBC model. The top subfigure in Fig. 10 illustrates

Fig. 5 FGM with positive

Poisson’s ratio of t = 0.90

(Example 1)

Design Domain 

0.2

0.2

0.6

F

F

(a) (b) 

Fig. 6 PBC model and design result with pseudo load: (a) model

with two point loads and fixed kinematical boundary and (b) optimal

result for the 5th layer of FGM

Fig. 7 FGM with negative

Poisson’s ratio t = -0.51

(Example 2)
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that the Young’s modulus and volume fraction (from left to

right) change gradually from 0.0094 to 0.245 and from

0.1663 to 0.3760, respectively, while the Poisson’s ratio is

kept at 0.89. Figure 11 plots the convergence history of the

objective function given in Eq. 10. Unlike Example 3 in

Fig. 9, the topologies in all the PBCs across different layers

herein resemble each other. It is interesting to mention that

despite the topological differences, the gradients of the

volume fraction and Young’s modulus are considerably

similar in Examples 3 and 4 (compared to the curves in

Figs. 9 and 10). Like those microstructures in bamboo

section [6], it is seen that these two FGM designs in Figs. 9

and 10 have a sizeable increase in the thickness of solid

materials (similarly to that in the fiber sizes of bamboo

microstructure) along gradient direction.

Example 5 is presented in Fig. 12, whose microstructure

is generated from Initial Design 2 for a FGM with a neg-

ative effective Poisson’s ratio (t = -0.51) over the 12

layer-seeded GBC model. The curves in Fig. 12 illustrate

the gradients of Young’s modulus (from 0.0488 to 0.1827)

and volume fraction (from 0.4890 to 0.7527). It is observed

again that the topologies in different layers of PBCs are

somewhat similar but the thickness of solid phase varies.

Such a design appears in a good agreement with the report

of the negative Poisson’s ratio materials in [44], where

Fig. 8 The convergence of the objective function and its components

Fig. 9 FGM with a positive

effective Poisson’s ratio

t = 0.89 (Example 3)

Fig. 10 FGM with a positive

Poisson’s ratio t = 0.89

(Example 4)

Fig. 11 Convergence of the objective function in Example 4
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polyethylene foams of several different cell sizes are

studied on their transformation.

It is also noted that all the connectivity between the

adjacent PBCs preserves well in Examples 3, 4 and 5,

although there are no constraints of connective boundary

and/or loads imposed for either Initial Designs 1 or 2. This

demonstrates the effectiveness of such a unified formula-

tion and the role of the nonlinear diffusion term.

Conclusion

This article presents an inverse homogenization method-

ology for microstructure design of FGMs. To ensure

connectivity between PBCs with property gradients, three

different approaches, namely (1) connective constraints,

(2) pseudo load and (3) unified formulation with nonlinear

diffusion, are proposed. Of them, the first two approaches

design PBCs individually. In these cases, proper kinemat-

ical connective areas (in a form of non-design domain) or

pseudo load and boundaries are prescribed prior to the

design of each PBC model. The examples demonstrated

that desirable interconnection across the PBC boundary is

generated. Different from these individual PBC design

methods, the third approach formulates the graded property

through a GBC model with finite number of layers, where

the entire FGM microstructure is designed altogether. In

this scenario, three different examples with either the

constant positive or negative Poisson’s ratios demonstrated

that the unified modeling method can effectively avoid the

difficulty of prescribing connective constraints and/or

pseudo loads in order to ensure PBC interconnection in the

GBC model. These three approaches provide effective

means to microstructural design of FGM.

It should be pointed out that although compositional

FGM design could allow smoother gradients of properties

theoretically, the particle and/or grain sizes may practically

restrict their true continuity. The FGM microstructural

design presented herein has no specific dimensional factors

and can be made in any sensible scale that the current and

futuristic fabrication technologies provide [17–19], which

makes this present design methodology equally practical.
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